
Bolt Documentation
Release 1.0

Shyam Sundar Sankaran, Mani Chandra

May 02, 2021

Contents:

1 About Bolt: 1

2 Doc Contents 3
2.1 Home . 3
2.2 Theory . 4
2.3 Installation . 5
2.4 Getting started with Bolt . 6
2.5 Units . 7
2.6 Quick-Reference: . 14

3 Other Links 15

i

ii

CHAPTER 1

About Bolt:

Bolt is a flexible framework for solving kinetic theory formulations, making use of the finite volume and/or advective
semi-lagrangian method. Additionally, it also consists of a linear solver which is primarily used in verifying the results
given by the nonlinear solver. The code is open-source and developed by the research division at Quazar Technologies,
Delhi where it used to study device physics and astrophysical plasmas

The code is written in Python and features an easy-to-use interface, where the user provides input through a
physical system object which holds details about the system solved. The physical_system object is de-
clared by defining the advection terms, and the source term for the system of interest. Additionally, the physical
simulation also requires details such as the domain information, and initial conditions.

Bolt is capable of running on CPUs and GPUs, and has been parallelized to be able to run efficiently across several
nodes/devices.

1

http://quazartech.com

Bolt Documentation, Release 1.0

2 Chapter 1. About Bolt:

CHAPTER 2

Doc Contents

2.1 Home

2.1.1 Overview

What is Bolt?

Bolt is an open-source Python based framework for solving kinetic theory formulations uptil 5-dimensional phase
space on a range of devices using the finite volume method, and/or the advective Semi-Lagrangian approach originally
proposed by Cheng&Knorr. The framework is designed to solve a range of physical systems where the domain of
interest can be mapped on to a rectangular grid. It is designed to target a range of hardware platforms via use of the
ArrayFire library, and is completely parallelized to run on large clusters by use of the PETSc library.

The current release has the following capabilities:

• Dimensionality - Upto 2D3V phase space dimensionality

• Interpolation Methods - Linear, Cubic Spline

• Reconstruction Methods - minmod, PPM, WENO5

• Riemann Solvers - 1st Order Upwind flux, Local Lax-Friedrics flux

• Platforms - CPUs, OpenCL Devices, CUDA Devices

• Temporal Discretisation:

– Time Splitting: Strang, Lie, SWSS

– Time Stepping : Explicit - RK2, RK4, RK6

• Precision - Double

• Solution Files Exported - HDF5 (.h5, .hdf5)

3

http://arrayfire.com
https://www.mcs.anl.gov/petsc/

Bolt Documentation, Release 1.0

2.2 Theory

In Bolt, the defined system is evolved by stepping the complete probability distribution function, from which
physical parameters of interest about the system may be obtained by coarse-graining the system via use of the
compute_moments method. The implementation allows us to deal with a wide range of boundary conditions
with ease, in addition to capturing the dynamics of short-range interactions via a collision operator(input as a source).
Bolt is capable of performing accurate simulations of systems that are governed by the form:

𝜕𝑓

𝜕𝑡
+ 𝐴𝑞1

𝜕𝑓

𝜕𝑞1
+ 𝐴𝑞2

𝜕𝑓

𝜕𝑞2
+ 𝐴𝑝1

𝜕𝑓

𝜕𝑝1
+ 𝐴𝑝2

𝜕𝑓

𝜕𝑝2
+ 𝐴𝑝3

𝜕𝑓

𝜕𝑝3
= 𝑆(𝑓)

Bolt can make use of the finite-volume method and/or the non-conservative semi-lagrangian method.

2.2.1 Finite Volume Method

To explore this method in detail, we’ll first need to define the generalized conservative equations:

𝜕𝑓

𝜕𝑡
+

𝜕(𝐶𝑞1𝑓)

𝜕𝑞1
+

𝜕(𝐶𝑞2𝑓)

𝜕𝑞2
+

𝜕(𝐶𝑝1𝑓)

𝜕𝑝1
+

𝜕(𝐶𝑝2𝑓)

𝜕𝑝2
+

𝜕(𝐶𝑝3𝑓)

𝜕𝑝3
= 𝑆(𝑓)

The conservative equations are multiplied by the volume element of a discrete grid zone in phase space ∆𝑣 =
𝑑𝑞1𝑑𝑞2𝑑𝑝1𝑑𝑝2𝑑𝑝3, and using the divergence theorem gives use the finite volume formulation:

𝜕𝑡𝑓 +
𝐹 𝑞−𝑟𝑖𝑔ℎ𝑡
𝑞1 − 𝐹 𝑞−𝑙𝑒𝑓𝑡

𝑞1

∆𝑑𝑞1
+

𝐹 𝑞−𝑡𝑜𝑝
𝑞2 − 𝐹 𝑞−𝑏𝑜𝑡𝑡𝑜𝑚

𝑞2

∆𝑑𝑞2
+

𝐹 𝑝−𝑟𝑖𝑔ℎ𝑡
𝑝1 − 𝐹 𝑝−𝑙𝑒𝑓𝑡

𝑝1

∆𝑑𝑝1

+
𝐹 𝑝−𝑡𝑜𝑝
𝑝2 − 𝐹 𝑝−𝑏𝑜𝑡𝑡𝑜𝑚

𝑝2

∆𝑑𝑝2
+

𝐹 𝑝−𝑓𝑟𝑜𝑛𝑡
𝑝3 − 𝐹 𝑝−𝑏𝑎𝑐𝑘

𝑝3

∆𝑑𝑝3
= 𝑆

Where 𝑓 = (
∫︀
𝑓∆𝑣)/

∫︀
∆𝑣, 𝑆 = (

∫︀
𝑆∆𝑣)/

∫︀
∆𝑣, 𝐹𝑞1 = (

∫︀
𝑓𝐶𝑞1𝑑𝑞2𝑑𝑝1𝑑𝑝2𝑑𝑝3)/

∫︀
𝑑𝑞2𝑑𝑝1𝑑𝑝2𝑑𝑝3,

𝐹𝑞2 = (
∫︀
𝑓𝐶𝑞2𝑑𝑞1𝑑𝑝1𝑑𝑝2𝑑𝑝3)/

∫︀
𝑑𝑞2𝑑𝑝1𝑑𝑝2𝑑𝑝3, 𝐹𝑝1 = (

∫︀
𝑓𝐶𝑝1𝑑𝑞1𝑑𝑞2𝑑𝑝2𝑑𝑝3)/

∫︀
𝑑𝑞1𝑑𝑞2𝑑𝑝2𝑑𝑝3, 𝐹𝑝2 =

(
∫︀
𝑓𝐶𝑝2𝑑𝑞1𝑑𝑞2𝑑𝑝1𝑑𝑝3)/

∫︀
𝑑𝑞1𝑑𝑞2𝑑𝑝1𝑑𝑝3, 𝐹𝑝3 = (

∫︀
𝑓𝐶𝑝3𝑑𝑞1𝑑𝑞2𝑑𝑝1𝑑𝑝2)/

∫︀
𝑑𝑞1𝑑𝑞2𝑑𝑝1𝑑𝑝2.

The locations right, left, top, bottom, front, and back are mentioned whether they are considered in q-space or p-space
since we are considering 5-dimensional phase space here. The appropriate value at the boundaries is obtained by using
a reconstruction operator which takes in the cell-centered values and constructs a polynomial interpolant from which
the edge states can be computed. The time derivative term 𝜕𝑡𝑓 is then passed to an appropriate integrator to evolve the
system in time.

2.2.2 Semi-Lagrangian Method

In this approach, a probability distribution function is given a grid-based Eulerian representation which is then evolved
via Lagrangian dynamics. The CFL time step restriction of a regular finite difference or finite volume scheme is
removed in a semi-Lagrangian framework, allowing for a cheaper and more flexible numerical realization. However,
the downside is that the method is non-conservative

A detailed overview of the advective semi-Lagrangian method is given in:

• The integration of the Vlasov equation in configuration space. Cheng, C. Z., & Knorr, G.
(1976). Journal of Computational Physics, 22(3), 330-351.<http://www.sciencedirect.com/science/article/pii/
002199917690053X>

4 Chapter 2. Doc Contents

http://www.sciencedirect.com/science/article/pii/002199917690053X
http://www.sciencedirect.com/science/article/pii/002199917690053X

Bolt Documentation, Release 1.0

2.3 Installation

2.3.1 Downloading the Source

Bolt is distributed using the git version control system, and is hosted on Github. The repository can be cloned using:

git clone https://github.com/QuazarTech/Bolt.git

2.3.2 Dependencies

Overview

Bolt has a hard dependency on Python 3+ and the following Python packages:

1. mpi4py

2. numpy

3. h5py

4. pytest

5. scipy

6. matplotlib

7. petsc4py

8. arrayfire

Before installing the above python packages, the following libraries need to be installed so that their python wrappers
can function:

Building ArrayFire

• Clone the arrayfire repository

• Build using the instructions that have been provided here

Building PETSc

• Clone the petsc repository

• We suggest that you install PETSc using the following:

./configure --prefix=/path/to/petsc_installation/ --with-debugging=0 COPTFLAGS="-
→˓O3 -march=native" CXXOPTFLAG S="-O3 -march=native" --with-hdf5=1 --download-
→˓hdf5 --with-clean=1 --with-memalign=64 --known-level1-dcache-size=32768 --known-
→˓level1-dcache-linesize=64 --known-level1-dcache-assoc=8 --with-hypre=1 --
→˓download-mpich=1 --with-64-bit-indices

• If you are keen on modifying the above build parameters, detailed instructions for the same may be found here

Below are instructions for building the PETSc stack on a few machines that we’ve tested on:

• On BRC HPC Savio:

2.3. Installation 5

http://mpi4py.scipy.org/
http://www.numpy.org/
http://www.h5py.org/
https://pypi.python.org/pypi/pytest
https://www.scipy.org/
https://http://matplotlib.org/
https://bitbucket.org/petsc/petsc4py
https://github.com/arrayfire/arrayfire-python
https://github.com/arrayfire/arrayfire
https://github.com/arrayfire/arrayfire/wiki/Build-Instructions-for-Linux
https://bitbucket.org/petsc/petsc
http://www.mcs.anl.gov/petsc/documentation/installation.html

Bolt Documentation, Release 1.0

python2 './configure' '--with-debugging=0' 'COPTFLAGS=-O3 -qopt-report=5 -qopt-
→˓report-phase=vec -xhost' 'CXXOPTFLAGS=-O3 -qopt-report=5 -qopt-report-phase=vec
→˓-xhost' '--with-hdf5=1' '--with-clean=1' '--with-mpi-dir=/global/software/sl-6.
→˓x86_64/modules/intel/2016.1.150/openmpi/1.10.2-intel/' '--with-blas-lapack-dir=/
→˓global/software/sl-6.x86_64/modules/langs/intel/2016.1.150/mkl/lib/intel64' '--
→˓with-memalign=64' '--known-level1-dcache-size=32768' --known-level1-dcache-
→˓linesize=64' 'known-level1-dcache-assoc=8' '--with-hypre=1' '--download-hypre=1
→˓' '--with-64-bit-indices'

2.3.3 Installation

Before running Bolt it is first necessary to either install the software using the provided setup.py installer(TODO)
or add the root directory to PYTHONPATH using:

user@computer ~/Bolt$ export PYTHONPATH=.:$PYTHONPATH

Once the build of ArrayFire and PETSc is completed install the python dependencies using:

user@computer ~/Bolt$ pip install -r requirements.txt

2.4 Getting started with Bolt

2.4.1 Overview

Bolt is organized such that a system is defined by making use of the physical_system class. The object created
by physical_system is then passed as an argument to the solver objects.

Physical System

An instance of the physical_system object may be initialized by using:

system = physical_system(domain,
boundary_conditions,
params,
initialize,
advection_terms,
source,
moments
)

The arguments in the above command are all python modules/functions, where the details regarding the system being
solved have been provided.

A detailed breakdown of what is to be contained in these files is demonstrated in the tutorials.

Solvers

The solver objects may be declared by using:

nls = nonlinear_solver(system)
ls = linear_solver(system)

6 Chapter 2. Doc Contents

Bolt Documentation, Release 1.0

The physical system defined is then evolved using the various time-stepping methods available under each solver:

for time_index, t0 in enumerate(time_array):
print('Computing For Time =', t0)
nls.strang_timestep(dt)
ls.RK2_step(dt)

The abstracted information about the system may be obtained by using the compute_moments method available
under each solver:

density_nls = nls.compute_moments('density')
density_ls = ls.compute_moments('density')

The data about the evolved system can be dumped to file by making use of the methods
dump_distribution_function,‘‘dump_moments‘‘ and dump_EM_fields

Running in Parallel

Bolt can be run in parallel across multiple nodes. To do so prefix the python command being executed with mpirun
-n <nodes/devices>. Make sure that num_devices is set correctly under params when running on nodes
which contain more than a single accelerator(NOTE: The parallelization has only been implemented for the nonlinear
solver. The linear solver can only take advantage of shared memory parallelism)

2.4.2 Tutorial Notebook

This notebook covers the basics of setting up and interacting with the primary features of the code. We consider the
example problem of a 1D1V setup of the non-relativistic Boltzmann equation in which we observe the damping of the
density with time.

2.4.3 Example Scripts

A wide range of examples are available under the example_problems subdirectory of the main code repository,
which you can browse here.

These examples cover a wider range of use cases, including larger multidimensional problems designed for parallel
execution. Most folders also have a README which gives context for the case that has been setup. Basic post-
processing and plotting scripts are also provided with many problems.

These simulation and processing scripts may be useful as a starting point for implementing different problems and
equation sets.

2.5 Units

Bolt handles dimensionless quantities normalized using some reference quantities. It’s to be ensured that all input
quantities are normalized appropriately when passing to physical_system. This is to be done under the parameter
and domain files under the respective problem folder.

Let us now illustrate this choice of normalization that can be adapted, when dealing with a purely collisonless case
with electrostatic fields. Note that this is just one of the possible ways in which the independant units can be arrived
at:

2.5. Units 7

http://nbviewer.jupyter.org/github/ShyamSS-95/Bolt/blob/master/example_problems/nonrelativistic_boltzmann/quick_start/tutorial.ipynb
https://github.com/QuazarTech/Bolt/tree/master/example_problems

Bolt Documentation, Release 1.0

The equations governing by the system under consideration is given by:

𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕𝑥
+

𝑞𝐸

𝑚

𝜕𝑓

𝜕𝑣
= 0

𝐸 = −𝜕𝜑

𝜕𝑥

∇2𝜑 = − 𝜌

𝜖0
= −𝑛𝑒

𝜖0

• As we’d stated earlier, we have a choice of declaring a few variables with respect to absolute reference quanti-
ties(independant quantities), and find that the remaining dependant quantities can be expressed in terms of these.
For this example, we’ll choose appropriate reference units for time 𝑡, velocity 𝑣, charge 𝑒 and mass 𝑚.

• When dealing with a plasma at constant mean density 𝑛𝑒 , it is convenient to normalize times by introducing

the electron plasma frequency 𝜔𝑝𝑒 =
√︁

𝑛𝑒2

𝑚𝜖0
. Then all times are normalized using 𝜔𝑝𝑒

−1. For the sake of

convenience, let’s call this normalization factor 𝑡0 (where 𝑡0 = 𝜔𝑝𝑒
−1):

𝑡 = 𝑡0𝑡

Similarly, we introduce the scaling factor 𝑣0 for the velocity. So the velocity can be expressed as:

𝑣 = 𝑣0𝑣

• Expressing the charge and the mass interms of our reference units 𝑒0 and 𝑚0 which are typically taken as the
electron charge and mass:

𝑒 = 𝑒0𝑒

𝑚 = 𝑚0�̄�

Now substituting these back into Vlasov-Boltzmann equation, we get:

1

𝑡0

𝜕𝑓

𝜕𝑡
+ 𝑣0𝑣

𝜕𝑓

𝜕𝑥
+

𝑒0
𝑚0𝑣0

𝑞𝐸

�̄�

𝜕𝑓

𝜕𝑣
= 0

=⇒ 𝜕𝑓

𝜕𝑡
+ 𝑣0𝑡0𝑣

𝜕𝑓

𝜕𝑥
+

𝑒0𝑡0
𝑚0𝑣0

𝑞𝐸

�̄�

𝜕𝑓

𝜕𝑣
= 0

=⇒ 𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕(𝑥
𝑣0𝑡0

)
+

𝑞

�̄�

𝐸

(𝑚0𝑣0
𝑒0𝑡0

)

𝜕𝑓

𝜕𝑣
= 0

=⇒ 𝜕𝑓

𝜕𝑡
+ 𝑣

𝜕𝑓

𝜕�̄�
+

𝑞�̄�

�̄�

𝜕𝑓

𝜕𝑣
= 0

Thus, we find that the normalization constant for the distance 𝑥 and electric field 𝐸 come out in terms of the indepen-
dantly chosen references:

𝑥 = 𝑥0�̄�;𝑤ℎ𝑒𝑟𝑒 𝑥0 = 𝑣0𝑡0

𝐸 = 𝐸0�̄�;𝑤ℎ𝑒𝑟𝑒 𝐸0 =
𝑚0𝑣0
𝑒0𝑡0

Now, let’s take a look at the appropriate normalizations that need to be applied for the electric potential:

𝐸 = −𝜕𝜑

𝜕𝑥

=⇒ 𝐸0�̄� = − 1

𝑥0

𝜕𝜑

𝜕�̄�

=⇒ �̄� = −
𝜕(𝜑

𝐸0𝑥0
)

𝜕�̄�

=⇒ �̄� = −𝜕𝜑

𝜕�̄�

8 Chapter 2. Doc Contents

Bolt Documentation, Release 1.0

Hence, we get 𝜑0 = 𝐸0𝑥0 =
𝑚0𝑣

2
0

𝑒0𝑡0

The table below gives a list of the normalizations we had used in this case, clearly distinguishing between the dependant
and the independant quantites:

Independant Quantities:

Physical Quantity Reference Unit
Time 𝑡0
Velocity 𝑣0
Charge 𝑒0
Mass 𝑚0

Dependant Quantities:

Physical Quantity Reference Unit
Distance 𝑣0𝑡0
Electric Field 𝑚0𝑣0

𝑒0𝑡0

Electric Potential 𝑚0𝑣
2
0

𝑒0𝑡0

2.5.1 Exploration of the Plasma Scales:

In this section, we indent to explore the different scales that can exist in plasmas. We hope to elaborate the differ-
ent time scales, length scales and velocity scales from which the scale that resolves the system under consideration
appropriately can be chosen. Derivations have been performed wherever appropriate to provide context:

Temporal Scales:

The following timescales can be taken when dealing with a plasma:

• Plasma Frequency

If one displaces by a group of charged particles from an electrically neutral plasma, the Coulomb force pulls the
electrons back which results in a simple harmonic oscillation given by the plasma frequency. Below we derive this
frequency.

Let us start by considering a charge neutral plasma where the positive charges and negative charges are next to each
other.

2.5. Units 9

Bolt Documentation, Release 1.0

Now if we move the negative charges by x, then we will end up with the following:

Thus, now there is a slab of positive and negative charges which would be exerting a field. Let us consider the field
created by the positive slab of charges:

10 Chapter 2. Doc Contents

Bolt Documentation, Release 1.0

By Gauss’ Law: ∫︁
�⃗� · 𝑑𝐴 =

𝑞

𝜖0

Now the charges are given by the number density multiplied by the volume of the segment, which can be expressed in
terms of the area 𝐴 and displacement 𝑥

𝑞 = 𝑛𝑒𝐴𝑥

=⇒
∫︁

�⃗�𝑑𝐴 =
𝑛𝑒𝐴𝑥

𝜖0

=⇒ 𝐸 =
𝑛𝑒𝑥

𝜖0

The force acting on an electron would be:

𝐹 = 𝑚𝑒𝑎 = −𝑒𝐸

=⇒ 𝑎 = − 𝑛𝑒2

𝑚𝑒𝜖0
𝑥 = −𝜔2𝑥

=⇒ 𝜔 =

√︃
𝑛𝑒2

𝑚𝑒𝜖0

• Gyrofrequency

Since the force acting on a charged particle in a magnetic field is always perpendicular to the direction of motion, the
particle executes circular motion. The gyrofrequency is the angular frequency of thus circular motion of the charged
particle in the plane perpendicular to the magnetic field. In the section below on length scales, we derive the gyroradius
which we’ll be using in obtaining the gyrofrequency. With the radius of gyration, we can calculate the time period of
the motion executed, from which the angular frequency can be obtained:

𝑇 =
2𝜋𝑟

𝑣⊥

𝜔 =
2𝜋

𝑇
=

𝑣⊥
𝑟

=⇒ 𝜔 =
𝑞𝐵

𝑚

• The Alfvén time

An Alfvén wave in a plasma is a low-frequency travelling oscillation of the ions and the magnetic field

The Alfven time 𝜏𝐴 characteri is an important timescale for wave phenomena, and characterizes the timescale for this
wave. It is related to the Alfvén velocity(which we derive in the section below) by

𝜏𝐴 =
𝑎

𝑣𝐴

Where 𝑎 is the characteristic length scale of the system in consideration.

Length Scales:

The following length scales can exist in a plasma:

• Thermal deBroglie Wavelength

𝜆 =
ℎ

𝑝

where ℎ is the planck constant, and 𝑝 is the momentum of the particle

2.5. Units 11

Bolt Documentation, Release 1.0

The relation between the momentum and kinetic energy is given by:

𝐸𝑘 =
𝑝2

2𝑚

The effective kinetic energy derived with the statistics of Fermi gas is given as 𝐸𝑘 = 𝜋𝑘𝐵𝑇 . Hence, we get the thermal
deBroglie wavelength as

𝜆 =
ℎ√

2𝑚𝜋𝑘𝐵𝑇

• Classical Distance of Closest Approach

The potential energy possessed by 2 particles of charge 𝑒1 and 𝑒2 separated by distance 𝑟 is given by:

𝐹 =
1

4𝜋𝜖

𝑒1𝑒2
𝑟

Now, this energy is to be balanced by the thermal energy of the plasma 𝐸𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑘𝑇 . Hence at the distance of
closest approach:

1

4𝜋𝜖

𝑒1𝑒2
𝑟

= 𝑘𝑇 =⇒ 𝑟 =
1

4𝜋𝜖

𝑒1𝑒2
𝑘𝑇

• Gyroradius

This is the radius of the circle in which the charge particle oscillates when subjected to a magnetic field. sThe force
on a moving charged particle in a magnetic field is given by the Lorentz force:

𝐹 = 𝑒(�⃗� × �⃗�)

The force would always act perpendicular to the direction of motion, and would hence cause the particle to move in a
circle in the plane perpendicular to the magnetic field. Equating this force to the centripetal force, we get:

𝑚𝑣2⊥
𝑟

= 𝑞𝑣⊥𝐵

=⇒ 𝑟 =
𝑚𝑣⊥
𝑞𝐵

• Debye Length

The plasma Debye length 𝜆𝐷 is the characteristic distance over which electrostatic potentials are screened out or
attenuated by a redistribution of the charged particles. A charge in a plasma will attract opposite charges and repel like
charges to the point that its electric eld is screened by the charges it has attracted, so particles outside the screening
charges are unaware of the presence of the interior charge.

For this derivation, it is assumed that the ions and electrons have the same temperature 𝑇 and number density 𝑛 prior
to the addition of another, positive, point charge. The charge of ions will be e andthe charge of electrons will be -

Thus, we have a plasma with temperature 𝑇 and number density 𝑛, and we add a positive point charge. The particles
will move around until they reach thermal equilibrium, at which point their probability of being in astate of energy U
is proportional to the Boltzmann factor

𝑃 (𝑈) ∝ 𝑒−
𝑈
𝑘𝑇

Now, the potential energy of a single particle from the new charge is 𝑈 = 𝑒𝑉 ,so the distribution function is given by

𝑓(𝑣) = 𝑛0

√︂
𝑚

2𝜋𝑘𝑇
𝑒−𝑓𝑟𝑎𝑐𝑚𝑣2

2 +𝑒𝑉 𝑘𝑇

The integralof the distribution function is the total particle number density, so we have:∫︁ ∞

−∞
𝑓(𝑣) = 𝑛 = 𝑛0𝑒

− 𝑒𝑉
𝑘𝑇

12 Chapter 2. Doc Contents

Bolt Documentation, Release 1.0

Now that we have the number density, we can get the charge density via 𝜌 = 𝑛𝑖𝑒 + 𝑛𝑒(−𝑒).

NOT TOO CLEAR ABOUT THE FOLLOWING SECTION

𝜌 = 𝑛𝑖𝑒 + 𝑛𝑒(−𝑒) = 𝑒(𝑛𝑖 − 𝑛𝑒) = 𝑒𝑛0(𝑒−
𝑒𝑉
𝑘𝑇 − 𝑒

𝑒𝑉
𝑘𝑇) = −𝑒𝑛0 sinh(

𝑒𝑉

𝑘𝑇
)

This allows us to write down Poisson’s equation

∇2𝑉 = −𝜌

𝜖
=

𝑒𝑛0 sinh(𝑒𝑉
𝑘𝑇)

𝜖

Since 𝑒𝑉 << 𝑘𝑇 , we can expand the RHS using Taylor series:

∇2𝑉 =
𝑒𝑛0

𝜖

𝑒𝑉

𝑘𝑇
=

𝑛0𝑒
2

𝜖𝑘𝑇
𝑉

Expressing this as:

∇2𝑉 =
𝑉

𝜆2
𝐷

;𝑤ℎ𝑒𝑟𝑒 𝜆𝐷 =
𝜖𝑘𝑇

𝑛0𝑒2

This equation has the solution:

𝑉 = 𝑉0𝑒
− 𝑥

𝜆𝐷

From this form of the solution it is clear what the physical meaning of 𝜆𝐷 is. Inside of 𝜆𝐷, charges feel the potential
due to the central charge. Outside of this Debye length, the potential falls o exponentially, and charges are no longer
aware of the presence of the central charge. The charge is, eectively, screened by the surrounding charges.

Reference

• Plasma Skin Depth

The plasma skin depth is the depth in a collisionless plasma to which low-frequency electromagnetic radiation can
penetrate (as defined by attenuation of the wave amplitude by a factor of 1/𝑒)

In a traditional plasma, the expression for plasma skin depth is given by 𝑙𝑠 = 𝑐
𝜔𝑝

where 𝑐 is the speed of light in
vacuum.

𝑙𝑑𝑒𝑏𝑦𝑒 = 𝑐

√︂
𝜖𝑚

𝑛𝑒2

Reference

Velocity Scales:

• Thermal Velocity

Equating the kinetic energy and thermal energy of the plasma, we obtain the thermal velocity which we use for scaling
the velocity terms

1

2
𝑚𝑣0

2 =
1

2
𝑘𝑇 =⇒ 𝑣0 =

√︂
𝑘𝑇

𝑚

• Sound Velocity:

𝑐𝑠 =
√︀
𝛾𝑅𝑇

• Alfven Velocity

2.5. Units 13

https://www.scribd.com/document/218839229/Derivation-of-Debye-Length
http://www-thphys.physics.ox.ac.uk/research/plasma/JPP/papers17/pedersen2.pdf

Bolt Documentation, Release 1.0

NOT TOO CLEAR ON THIS. WikiPage derivation seems strange.

Alfvén waves are a fundamental physical phenomenon in all kinds of magnetized plasmas. Alfvén waves contribute
to a variety of physical processes in space plasmas.

In plamas dominated by Alfvén waves, tension is due to the magnetic field. The plasma behaves like air except it is
affected by magnetic fields. The dynamics are dominated by the energy density and pressure of the magnetic field. In
this case, the appropriate sound speed is the Alfven speed

𝑣𝑎 =

√︃
𝐵2

𝜌𝜇0

Reference

2.6 Quick-Reference:

bolt.lib.physical_system
bolt.lib.linear.linear_solver This is the module which contains the functions of the

linear solver of Bolt.
bolt.lib.nonlinear.nonlinear_solver This is the module where the main solver object for the

nonlinear solver of bolt is defined.

14 Chapter 2. Doc Contents

https://en.wikipedia.org/wiki/Alfv%C3%A9n_wave
http://www.ae.metu.edu.tr/~ae551/16/osmanakgun.pdf

CHAPTER 3

Other Links

Learn more about Bolt by visiting the

• Code repository: http://github.com/QuazarTech/Bolt

• Documentation: http://qbolt.rtfd.io

15

http://github.com/QuazarTech/Bolt
http://qbolt.rtfd.io

	About Bolt:
	Doc Contents
	Home
	Theory
	Installation
	Getting started with Bolt
	Units
	Quick-Reference:

	Other Links

